
32

Sparse Approximation via Generating Point Sets

AVRIM BLUM, Toyota Technological Institute at Chicago

SARIEL HAR-PELED, University of Illinois, Urbana–Champaign

BENJAMIN RAICHEL, University of Texas at Dallas

For a set P of n points in the unit ball b ⊆ Rd , consider the problem of finding a small subset T ⊆ P such

that its convex-hull ε-approximates the convex-hull of the original set. Specifically, the Hausdorff distance

between the convex hull ofT and the convex hull of P should be at most ε . We present an efficient algorithm

to compute such an ε ′-approximation of size kalg, where ε ′ is a function of ε and kalg is a function of the

minimum size kopt of such an ε-approximation. Surprisingly, there is no dependence on the dimension d in

either of the bounds. Furthermore, every point of P can be ε-approximated by a convex-combination of points

of T that is O (1/ε2)-sparse.

Our result can be viewed as a method for sparse, convex autoencoding: approximately representing the

data in a compact way using sparse combinations of a small subsetT of the original data. The new algorithm

can be kernelized, and it preserves sparsity in the original input.

CCS Concepts: • Theory of computation → Approximation algorithms analysis; • Computing method-

ologies → Unsupervised learning;

Additional Key Words and Phrases: Convex hull, coreset, sparse approximation

ACM Reference format:

Avrim Blum, Sariel Har-Peled, and Benjamin Raichel. 2019. Sparse Approximation via Generating Point Sets.

ACM Trans. Algorithms 15, 3, Article 32 (June 2019), 16 pages.

https://doi.org/10.1145/3302249

1 INTRODUCTION

This article deals with the topic of (doubly) sparse data representation. Namely, given a point set,
we would like to identify a small subset such that each input point can be represented by a small
combination from this subset. Such representations enable one to efficiently store and manipulate
the data and can be used to expose the low dimensionality of the input. The desired sparsity is

Work by A.B. was conducted while on sabbatical at the University of Illinois and was partially supported by NSF awards

CCF-1415460 and CCF-1525971. Work by S.H. was partially supported by NSF AF awards CCF-1421231 and CCF-1217462.

Work by B.R. was partially supported by the University of Illinois Graduate College Dissertation Completion Fellowship,

NSF CRII Award 1566137, and CAREER Award 1750780.

A preliminary version of this article appeared in SODA 16 [7]. The full version of the article is also available on the arxiv

[6].

Authors’ addresses: A. Blum, Toyota Technological Institute at Chicago (TTIC), 6045 S. Kenwood Ave. Chicago, IL 60637,

USA; S. Har-Peled, SC 3306, Computer Science, UIUC, 201 N. Goodwin Avenue, Urbana, IL 61801, USA; B. Raichel, Depart-

ment of Computer Science, Univeristy of Texas at Dallas, 800 W. Campbell Rd., MS EC-31, Richardson, TX 75080, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1549-6325/2019/06-ART32 $15.00

https://doi.org/10.1145/3302249

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 32. Publication date: June 2019.

https://doi.org/10.1145/3302249
mailto:permissions@acm.org
https://doi.org/10.1145/3302249

32:2 A. Blum et al.

twofold, both in the size of the generating set and the number of elements of this set used in
representing each data point.

The Dimension of the Data. In the worst case, the data might be inherently high dimensional—
making it hard to handle it efficiently. However, for many real-wold inputs, the data are close to
being low dimensional in nature—either because they (almost) lie on a low-dimensional manifold
or because they are highly clustered. The challenge as such is to use the inherent low-dimensional
nature of the data (if it exists) to get more efficient algorithms.

Sparse Approximation and Coresets. Let P be a set of n points (observations) in the unit ball b ⊆
Rd , and let �P denote the convex-hull of P . Consider the problem of finding a small ε-coresetT ⊆ P
for projection width. Formally, given any line � in Rd consider the projection of �T (respectively,�P) onto the line �—this results in an interval IT ⊆ � (respectively, IP ⊆ �). We have that IT ⊆ IP .

We require that IP ⊆ (1 + ε)IT . Such coresets have sizeO (1/ε (d−1)/2) and lead to numerous efficient
approximation algorithms in low dimensions, see References [1]. In particular, such an ε-coreset
guarantees that the Hausdorff distance between �T and �P is at most ε .

While such coresets can have size Ω(1/ε (d−1)/2) in the worst case, the dataset may have structure
allowing much smaller coresets to exist even in high dimensional spaces. For example, consider
a dataset P in which all points are ε-close to one of k different lines. Then taking the extreme
dataset points associated with each line results in 2k points, such that every p ∈ P is 2ε-close
to the convex hull of those points (this is the merge-and-reduce property of coresets; see Refer-
ence [2, Section 5]). More generally, the union of any two datasets that have ε-close approximations
of sizes k and k ′, respectively, has one of size at most k + k ′. Thus, it is natural to ask whether one
can approximate the smallest such coreset, in terms of both its size and approximation quality.

The Problem in Matrix Form. Given a collection P of n points (observations) in the unit ball
b ⊆ Rd , viewed as column vectors, find ad × k matrixM such that eachp ∈ P can be approximately
reconstructed as a sparse, convex combination of the columns of M . That is, for each p ∈ P there
exists a sparse non-negative vector x whose entries sum to one such that p ≈ Mx . This problem
is trivial if we allow k = n: Simply make each data point p ∈ P into a column of M , allowing the
ith data point to be perfectly reconstructed using x = ei , where ei is the ith vector in the standard
basis. The goal is to do so using k � n, so that M and the x ’s can be viewed as an (approximate)
compressed representation of the p’s.

Input Assumption. We are given a set P of n points in Rd all with norm at most 1. Suppose that
there exists a d × kopt matrix M , such that

(A) each column of M is a convex combination of the observations p, and
(B) each p ∈ P can be ε-approximately reconstructed as a convex combination of the columns

of M : That is, for each p ∈ P there exists a non-negative vector x whose entries sum to 1
such that ‖p −Mx ‖ ≤ ε .

Stated geometrically, the assumption is that the input P is contained in the unit ball b (centered
at the origin), and there exists a set Popt ⊆ �P , of size kopt, such that for any point p ∈ P , we have
thatp is ε-close to �Popt, where �Popt denotes the convex-hull of Popt. Formally, being ε-close means
that the distance of p to the set �Popt is at most ε .

Our Results. We present efficient algorithms for computing ad × kalg matrixM ′, consisting ofkalg

points of P , such that each p ∈ P can be ε ′-approximately reconstructed as a sparse convex combi-
nation of the columns ofM ′, where kalg and ε ′ are not too large, see Figure 1 for details. Here sparse

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 32. Publication date: June 2019.

Sparse Approximation via Generating Point Sets 32:3

Fig. 1. Summary of our results: Given a set P contained in the unit ball of Rd , such that there is a subset

Popt ⊆ P of size kopt, and dH (�P ,�Popt) ≤ ε , the above results compute an approximate setT ⊆ P . Note that

any point in P has anO (1/ε2)-sparse (ε + ε ′)-approximation usingT , because of the underlying sparsity—see

Lemma 2.7.

means that only relatively few of the columns of M ′ would be used to represent (approximately)
each point of data.

Stated in geometric terms, the algorithm computes a setT ofkalg points (these will be points from
P) such that every point in P is ε ′-close to the convex hull ofT and, moreover, can be approximately
reconstructed using a sparse convex combination of T .

The reader may notice that sparsity is not mentioned in the assumption about Popt (≡ M) and yet
appears in the conclusion aboutT (≡ M ′). This is because convex combinations have the property
that sparsity can be achieved almost for free, at the expense of a small amount of reconstruction
error (see Lemma 2.7). This is to some extent the same reason that a large margin separator can
be represented using a small number of support vectors.

Related Work. In comparison with the recent provable algorithms for autoencoding of Arora et al.
[3], our result does not require any distributional assumptions on the x ’s or p’s, e.g., that the p ∈ P
were produced by choosing x from a particular distribution and then computing Mx and adding
random noise. It also does not require that the columns of M be incoherent (nearly orthogonal).
However, we do require that the columns of M be convex combinations of the points p ∈ P and
that they can approximately reconstruct the p ∈ P via convex combinations, so our results are
incomparable to those of Arora et al. [3]. Work on related encoding or dictionary learning problems
in the full rank case has been done by Spielman et al. [19], and efficient algorithms for finding
minimal and sparse Boolean representations under anchor-set assumptions were given by Balcan
et al. [4].

By considering all conic rather than convex combinations of the points, i.e., positive combina-
tions that no longer need to sum to 1, our problem can be seen to be related to (a discrete version of)
non-negative matrix factorization. Recently, Van Buskirk et al. [8] applied our results to the conic
case by reducing it to the convex case when the angular spread is bounded. Moreover, they showed
that given n points in Rd+2, it is d-SUM-Hard to determine whether there is a subset of k points
that ε-approximate the convex (or conic) hull, thus justifying the need to consider approximation
algorithms in the current article.

1.1 The Results in Detail

Our results are summarized in Figure 1.
Preliminaries:

(A) Sparse nearest-neighbor in high dimensions. For a set of points P in the unit ball
b ⊆ Rd and any point p ∈ �P , one can find a point p ′ ∈ �P that is the convex combi-
nation of O (1/ε2) points of P , such that ‖p − p ′‖ ≤ ε . This is, of course, well known by
now [10], and we describe (for the sake of completeness) the surprisingly simple iterative

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 32. Publication date: June 2019.

32:4 A. Blum et al.

algorithm (which is similar to the Perceptron algorithm) to compute such a representa-
tion in Section 2.2. This sparse representation is sometimes referred to as an approximate
Carathéodory theorem [5], and it also follows from the analysis of the Perceptron algo-
rithm [18]—see Remark 2.8.

(B) Geometric hitting set. Our problem can be interpreted as (a somewhat convoluted)
geometric hitting set problem. In particular, one can apply the Clarkson [9] polytope
approximation algorithm to this problem, thus yielding anO (d logkopt) approximation in

nO (d) time. For the sake of completeness, we describe this in detail in Section 3.1. (Since
d might be large, this approximation is somewhat less attractive.)

Our results:

(C) The greedy approach. A natural approach is to try and solve the problem using the
greedy algorithm. Here this requires some work, and the resulting algorithm is a com-
bination of the algorithm from (A) with greedy set cover for the ranges defined in (B).
We initialize an instance of the algorithm from (A) for each point p ∈ P whose job is to
either find a hyperplane through p separating it from P \ {p} by a large margin or else to
approximate p as a combination of a few support-vectors in P \ {p}. At each step, we find
the point p ′ ∈ P that causes as many of these algorithms to perform an update as possible
and add it into our setT . The key issue is to prove that the procedure halts after a limited
number of steps. This algorithm is described in Section 3.2.

(D) Using greedy clustering. The second algorithm, and our main contribution, is more
similar in spirit to the Gonzalez algorithm for k-center clustering: Repeatedly find the
point p ∈ P that is farthest from the convex hull of the points of T and then add it into
T if this distance is greater than some threshold (a similar idea was used for subspace
approximation [14, Lemma 5.2]). The key issue here is to prove that some measure of
significant progress is made each time a new point is added. Somewhat surprisingly, after
O (kopt/ε

2/3) iterations, the resulting set is anO (ε1/3)-approximation to the original set of
points. Note, that unlike the other results mentioned above, there is no dependence on
the dimension or the input size.

An additional property of all the above algorithms is that the pointsT found will be actual dataset
points and the algorithms only require dot-product access to the data. This means that the algo-
rithms can be kernelized.

Overview. We formally define the problem in Section 2.1. The workhorse of our algorithms is a
procedure that computes the nearest point in a convex hull and is described in Section 2.2.

In Section 3, we present approximation algorithms that arise from the natural hitting set for-
mulation. Specifically, in Section 3.1, we present a VC dimension-based rounding argument, with

running time exponential in the dimension (i.e., nO (d)). We present a greedy algorithm in Sec-
tion 3.2—its running time is polynomial in n, but the constant term is subexponential in d . Both of
these algorithms are presented as what can be done with known machinery.

Our main contribution is in Section 4, where we present a bi-criterion approximation algorithm
for our problem that has polynomial running time in all parameters.

2 PRELIMINARIES

For a set X ⊆ Rd , �X denotes the convex hull of X . For two sets P ,U ⊆ Rd , we denote by
d (P ,U) = minp∈P minu ∈U ‖p − u‖ the distance between P and P ′. For a point q ∈ Rd , its distance

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 32. Publication date: June 2019.

Sparse Approximation via Generating Point Sets 32:5

to the set P is d (q, P) = d ({q}, P), and its projection or nearest neighbor in P is the point
nn(q, P) = arg minp∈P ‖q − p‖.

2.1 Sparse Convex-Approximation: Problem Statement and Background

For a set Y in Rd , its one-sided Hausdorff distance from X is d (Y → X) = maxy∈Y d (y,X).

Definition 2.1. Consider two sets Pin, Pout ⊆ Rd . A set U ⊆ �Pout is a δ-approximation to Pin

from Pout if d (�Pin → �U) ≤ δ . In words, every point of �Pin is within distance δ from a point of�U . In the discreteδ-approximation version, we require thatU ⊆ Pout. We use opt(Pin, Pout,δ) to
denote any minimum cardinality discrete δ -approximation to Pin from Pout and kopt (Pin, Pout,δ) =
|opt(Pin, Pout,δ) | to denote its size. We drop the phrase “from Pout” when it is clear from the context.

Problem 2.2. Given sets Pin, Pout ⊆ Rd , compute (or approximate) opt(Pin, Pout,δ).

For the majority of the article, we focus on the natural special case when P = Pin = Pout. The
Hausdorff distance between sets X and Y is defined as dH (X ,Y) = max(d (Y → X),d (X → Y)).

Lemma 2.3.

(i) For a convex set C ⊆ Rd , the function f (p) = d (p,C) is convex, where p ∈ Rd .

(ii) A convex-function f , over a convex bounded domain D ⊆ Rd , attains its maximum in a

boundary point of D.

(iii) For bounded point sets U , P ⊆ Rd , such that U ⊆ �P , we have dH (�U ,�P) = d (P → �U).

Proof. This is all well known, and we include the proof for the sake of completeness.
(i) Consider any two points p,y in Rd , and let p ′ = nn(p,C) andy ′ = nn(y,C). For any t ∈ [0, 1],

we have by convexity that z = tp + (1 − t)y ∈ py (i.e., z is a convex combination of p and y) and
z ′ = tp ′ + (1 − t)y ′ ∈ C . Therefore, by the triangle inequality, we have

f (z) = f
(
tp + (1 − t)y

)
≤ ��z − z ′�� = ���

(
tp + (1 − t)y

)
−
(
tp ′ + (1 − t)y ′

)���
=
���t (p − p ′) + (1 − t) (y − y ′)��� ≤

���t (p − p ′)��� +
���(1 − t) (y − y ′)���

= t ���p − p ′
��� + (1 − t) ���y − y ′

��� = t f (p) + (1 − t) f (y).

(ii) If p is the interior of D, then there are extremal points p1, . . . ,pd of D, and constants
α1, . . . ,αd ∈ [0, 1], such that

∑
i αi = 1 and p =

∑
i αipi . As such, by convexity, we have f (p) =

f (
∑

i αipi) ≤ ∑i αi f (pi) ≤ maxi f (pi).
(iii) By (i), the function d (p,�U) is convex. By (ii), its maximum over �P is attained at a point

of P . We thus have that

dH (�U ,�P) = max(d (�U → �P) ,d (�P → �U)) = d (�P → �U) = max
p∈�P

d (p,�U)

= max
p∈P

d (p,�U) = d (P → �U) . �

Definition 2.4. Consider any set P ⊆ Rd . A set U ⊆ �P is a δ-approximation to P if
dH (�U ,�P) ≤ δ . By the above lemma, this is equivalent to every point of P being in distance
at most δ from a point of �U . In the discrete δ-approximation version, we require that U ⊆ P .
Let opt(P ,δ) be any minimum cardinality δ -approximation to P , and let kopt (P ,δ) = |opt(P ,δ) |
denote its size.

Problem 2.5. Given a set P ⊆ Rd and value δ , compute (or approximate) opt (P ,δ).

Example 2.6. Consider a unit radius sphere S(d−1) in Rd centered at the origin, and let P be a

δ ′-packing on S(d−1) (i.e., every point in S(d−1) is at distance at most δ ′ from a point of P , and

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 32. Publication date: June 2019.

32:6 A. Blum et al.

Fig. 2. The points and other quantities defined in Lemma 2.7.

any two points of P are at distance at least δ ′ from each other). It is easy to verify that such a δ ′-
packing has size Θ(1/(δ ′)d−1). Furthermore, for any δ > 0, and an appropriate absolute constant

c (independent of the dimension or δ), setting δ ′ = c
√
δ , we have the property that for any point

p ∈ P , d (p,�P \ {p}) > δ . That is, any δ -approximation to P requires Ω(1/δ (d−1)/2) points.
However, let Pout = {±dei | i = 1, . . . ,d }, where ei denotes the ith orthonormal vector, having

zero in all coordinates except for the ith coordinate, where it is 1. Clearly, S(d−1) ⊆ �Pout, and as
such kopt (P , Pout,δ) ≤ |Pout | = 2d , with equality for δ = 0.

Throughout this article, we require that Pout be contained in the unit ball, disallowing this latter
type of “trivial” solution, and, furthermore, having the property that a successful approximation
also yields a sparse solution essentially for free, as shown next in Lemma 2.7.

2.2 Algorithm for Approximately Computing the Distance to the Convex Hull

The following is well known and is included for the sake of completeness, see Reference [13]. It
also follows readily from the Preceptron algorithm (see Remark 2.8 below).

Lemma 2.7. Let P ⊆ Rd be a point set, ε > 0 be a parameter, and q ∈ Rd be a given query point.

Then, one can compute, inO (|P | d/ε2) time, a point t ∈ �P , such that ��q − t�� ≤ d (q,�P) + εΔ,where

Δ = diam (P). Furthermore, t is a convex combination of O (1/ε2) points of P .

Proof. The algorithm is iterative, computing a sequence of points t0, . . . , ti inside �P that ap-
proach q. Initially, p0 = t0 is the closest point of P to q. In the ith iteration, the algorithm computes
the vector vi = q − ti−1, and the point pi ∈ P that is extremal in the direction of vi , see Figure 2.
Now, the algorithm sets ti to be the closest point to q on the segment si = ti−1pi , and continues to
the next iteration, for M = O (1/ε2) iterations. The algorithm returns the point tM as the desired
answer.

By induction, the point ti ∈ �{p0, . . . ,pi }. Furthermore, observe that the distance of the points
t0, t1, . . . from q is monotonically decreasing. In particular, for all i > 0, ti must fall in the middle of
the segment si , as otherwise pi would be closer to q than p0, a contradiction to the definition of p0.

Project the point pi to the segment ti−1q, and let yi be the projected point. Observe that ��q − yi
��

is a lower bound on d (q,�P). Therefore, if ��yi − ti−1
�� ≤ εΔ, then we are done, as ��q − ti−1

�� ≤��ti−1 − yi
�� + ��yi − q�� ≤ εΔ + d (q,�P) . (In particular, one can use this as alternative stopping con-

dition for the algorithm instead of counting iterations.)
So let α be the angle ∠piti−1q. Observe that as ti−1pi ⊆ �P , it follows that ��ti−1 − pi

�� ≤
diam (P) = Δ. Furthermore, cosα =

‖yi−ti−1‖
‖ti−1−pi ‖ >

εΔ
Δ = ε, since ��yi − ti−1

�� > εΔ. Hence, sinα =
√

1 − cos2 α ≤
√

1 − ε2 ≤ 1 − ε2/2. Let �i−1 = ��q − ti−1
��. We have that

�i = ��q − ti�� = ��q − ti−1
�� sinα ≤ (1 − ε2/2)�i−1.

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 32. Publication date: June 2019.

Sparse Approximation via Generating Point Sets 32:7

Analyzing the number of iterations required by the algorithm is somewhat tedious. If �0 =��q − t0�� ≥ (4/ε2)Δ, then the algorithm would be done in one iteration as otherwise �1 ≤ �0 − 2Δ,
which is impossible. In particular, after 4/ε2 iterations the distance �i shrinks by a factor of two,
and, as such, after O ((1/ε2) log(1/ε)) iterations the algorithm is done.

One can do somewhat better. By the above, we can assume that d (q, P) = O (Δ/ε2). Now
set εj = 1/22+j . By the above, after n0 = O ((1/ε2

0) log(1/ε0)) = O (1) iterations, �n0 ≤ d (q,�P) +

diam (P) /4. For j ≥ 1, letnj = 4/(εj)
2, and observe that, after νj = nj +

∑j−1
k=0

nk iterations, we have
that

�νj
≤
(
d (q,�P) + εj−1Δ

)
/2 ≤ d (q,�P) + εj Δ.

In particular, stopping as soon as εj ≤ ε , we have the desired guarantee, and the number of itera-

tions needed is M = O (1) +
∑ lg 1/ε �

j=0 4/ε2
j = O (1/ε2). �

In our use of Lemma 2.7, P and q will always be contained in the unit ball, so we can remove
the Δ term in the bound if we wish since Δ ≤ 2.

Remark 2.8. Lemma 2.7 is known, and a variant of it follows readily from a result (from 1962) on
the convergence of the Perceptron algorithm [18]. Indeed, consider a set P ⊆ Rd and a query point
q ∈ Rd . Assume that q ∈ �P and, furthermore, that q is the origin (translating space if needed to
ensure this). Run the Perceptron algorithm learning a linear classifier that passes through the origin
and classifies P as positive examples. Stop the algorithm after M = 1/ε2 classification mistakes
(since q ∈ �P , there will always be a mistake in P). Let p1, . . . ,pM be the sequence of points on
which mistakes were made, and let w = p1 + · · · + pM be the resulting hypothesis vector. By the

analysis of Reference [18], we have ‖w ‖ ≤ diam (P)
√
M . This implies that the point p ′ = w/M ,

which is a convex combination of the points p1, . . . ,pM , has length—and therefore distance from
q—at most εdiam (P).

Thus, we conclude that for any point p ∈ �P , and any ε ∈ (0, 1), there is a point p ′ ∈ �U that
is a convex combination of O (1/ε2) points of P , such that ��p − p ′�� ≤ εdiam (P). This is sometimes
referred to as the approximate Carathéodory theorem, which has been shown to apply more gen-
erally to any �p norm, forp ≥ 2, where the number of points output isO (p/ε2) [5, 17]. We described
the alternative algorithm (in the proof of Lemma 2.7) for the Euclidean norm, because it is more
direct and slightly simpler in this case.

Remark 2.9. The exact nearest-neighbor problem is somewhat more challenging. Specifically,
given a point p, and a set of points U , both in Rd , computing the nearest point to p in �U (i.e.,
nn (q,�U)) can be written as quadratic optimization problem. It can be solved using LP-type tech-

niques [12, Section 15.5] in time roughly 2O (
√

d log d)n, where n = |U |. Alternatively, weakly poly-
nomial time algorithms are known using the ellipsoid method. In the following, let Tnn (n) denote
the running time of this procedure.

3 APPROXIMATION ALGORITHMS VIA HITTING SET FORMULATION

Here we look at two hitting set–type algorithms for Problem 2.2. An (α , β)-approximation of
opt (Pin, Pout, ε) is a set U ⊆ Pout such that d (�Pin → �U) ≤ α and |U | ≤ βkopt (Pin, Pout, ε), see
Definition 2.1.

As a warm-up exercise, we first present an (ε,O (d logkopt))-approximation using approximation
algorithms for hitting sets for set systems with bounded VC dimension. Then we build on that to
get a greedy algorithm providing a ((1 + δ)ε,O ((εδ)−2 logn))-approximation, where n is the total
number of input points.

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 32. Publication date: June 2019.

32:8 A. Blum et al.

Fig. 3. Circles and squares denote points of Pin and Pout, respectively.

3.1 Approximation via VC Dimension

Definition 3.1. For a set P ⊆ Rd and a direction vector v , let p be the point of
P extreme in the direction of v , and let h′ be the hyperplane with normal v
and tangent to �P at p. For a parameter ε , let h be the hyperplane formed by
translating h′ distance ε in the direction −v . The ε-shadow of h′ (or v) is the
halfspace h+ (P , ε,v) bounded by h that contains p in its interior. In words, the ε-
shadow ofv is the outer supporting halfspace for P with a normal in the direction
of v , translated in by distance ε .

Lemma 3.2. Given sets Pin and Pout in Rd with a total of n points, and a parameter ε , one can

compute a (ε,O (d logkopt))-approximation to the optimal discrete set opt (Pin, Pout, ε) in nO (d) time.

Proof. For a direction v , consider the hyperplane h′ tangent to �Pin at an extremal point pv ∈
Pin in the direction of v and its ε-shadow h+ = h+ (Pin, ε,v), see Figure 3.

Clearly, any discrete ε-approximationU ⊆ Pout to Pin must contain at least one point of Pout ∩ h+,
as otherwise the approximation fails for the point pv (in particular, if such a halfspace has no point
in Pout, then there is no approximation). Now, consider the set system

S = (Pout,
{
Pout ∩ h+ (Pin, ε,v) �� v any unit vector

}
).

This set system has VC dimension at most d + 1, and, in particular, for such a set system one
can compute a O (d logkopt) approximation to its minimum size hitting set, which is the desired
approximation in this case, see Reference [12, Section 6.3]. We describe the algorithm below, but
first we verify that this indeed yields the desired approximation.

Consider a hitting set U ⊆ Pout of S. Let p be any point in �Pin, and let p ′ be the closest point
to p in �U . If ��p − p ′�� ≤ ε , then we are done. Otherwise, consider the vector v = p − p ′. Let z
denote the hyperplane whose normal is v and that passes through the point p ′, and let z+ denote
the open halfspace bounded by z and in the direction of v (i.e., containing p). As p ′ is the closest
point top in �U , z+ has empty intersection with �U . Moreover,h+ (Pin, ε,v) � z+, as the bounding
hyperplanes of both halfspaces have v as a normal, and the extreme point of �Pin in the direction
of v must be > ε away from z (as p is at least this far in the direction of v). See Figure 4. These
two facts combined imply h+ (Pin, ε,v) ∩ �U = ∅, a contradiction as h+ (Pin, ε,v) ∩ Pout is a set in
S that should have been hit.

As for the algorithm, Clarkson [9] described how to compute this set via reweighting, but
the following technique due to Long [16] is easier to describe (we sketch it here for the sake of
completeness). Consider the LP relaxation of the hitting set for this set system. Clearly, one can as-
sign weights to points (between 0 and 1), such that the total weight of the points is at most kopt, and
for every range inS the total weight of the points it covers is at least 1. Dividing this fractional solu-
tion by kopt, we get a weighted set system, where every set has weight at least η = 1/kopt, and total

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 32. Publication date: June 2019.

Sparse Approximation via Generating Point Sets 32:9

Fig. 4. The various quantities defined in Lemma 3.2.

weight of the points is 1. That is, we can interpret these weights over the points as a measure, where
all the sets of interests are η-heavy. A random sample of sizeO ((d/η) log(1/η)) = O (koptd logkopt)
of P (according to the weights) is an η-net with constant probability [15] and stabs all the sets of
S, as desired. Should the random sample fail, one can sample again until success. �

Note that in the above algorithm, the ranges in set system S can be enumerated in nO (d) time,
since the boundary of each ε-shadow is a hyperplane. That is, it suffices to consider the set of all
canonical hyperplanes with d input points on their boundary.

3.2 Approximation via a Greedy Algorithm

Lemma 3.3. Let Pin and Pout be sets of points in Rd contained in the unit ball, with a total of n points.

For parameters ε,δ ∈ (0, 1), and τ = O (ε−2δ−2 logn), one can compute a ((1 + δ)ε,τ)-approximation

to the optimal discrete set opt(Pin, Pout, ε). Namely, the algorithm outputs a subset of points of size

K = koptτ = O (koptε
−2δ−2 logn). The running time of the algorithm is O ((Tnn (K) + n)nK), where

Tnn (K) is the time to compute the nearest-neighbor to a convex-hull of a set of K points in Rd , see

Remark 2.9.

Proof. The algorithm is greedy—the basic idea is to restrict the set system of Lemma 3.2 to the
relevant active sets. Formally, letU0 =

{
p0
}
, wherep0 is some arbitrary point of Pout. For i > 0, in the

ith iteration, consider the current convex setCi−1 = �Ui−1. For a pointq ∈ Pin \Ci−1, let nn (q,Ci−1)
be its nearest point inCi−1, and letvi (q) be the direction of the vectorq − nn (p,Ci−1). In particular,
consider the ε-shadow halfspace h+ = h+ (Pin, ε,vi (q)), see Definition 3.1, which should be hit by
the desired hitting set.1

Let Zi ⊆ Pin be the set of points of Pin that are unhappy; that is, they are in distance ≥ (1 + δ)ε
from �Ui−1. We restrict our attention to the set system of active halfspaces; that is,

Si =

(
Pout,

{
Pout ∩ h+

(
Pin, ε,vi (q)

) ��� q ∈ Zi

})
.

(As before, if Pout ∩ h+ is empty, then no approximation is possible, and the algorithm is done.)
Now, as in the classical algorithm for hitting set (or set cover), pick the point pi in Pout that hits
the largest number of ranges in Si and add it to Ui−1 to form Ui .

A point q ∈ Zi is hit in the ith iteration if pi ∈ h+ (P , ε,vi (q)), see Figure 5. The argument of
Lemma 2.7 (or Remark 2.8) implies that after a point q ∈ Pin is hit c/(ε2δ 2) times, its distance to the
convex-hull of the current points is smaller than (1 + δ)ε , and it is no longer unhappy, where c is
some sufficiently large constant. Indeed, using the notation of the proof Lemma 2.7, if a pointq ∈ Zi

is hit in the ith iteration by a point pi , and d (q,�Ui−1) ≤ (1 + δ)ε , then we are done. Otherwise, let
ti−1 = nn (q,�Ui−1), and let yi be the projection of pi to the segment qti−1, see Figure 2. We have

1The hitting set computed by the algorithm is somewhat weaker, only hitting all the (1 + δ)ε -shadows.

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 32. Publication date: June 2019.

32:10 A. Blum et al.

Fig. 5. Point q is hit in the ith iteration when pi ∈ h+
(
P , ε,vi (q)

)
.

that ��yi − ti−1
�� ≥ ��q − ti−1

�� − ��q − yi
�� ≥ (1 + δ)ε − ε ≥ εδ , since ��q − yi

�� ≤ ε (aspi andyi are both
in the ε-shadow of q). Now the analysis of Lemma 2.7 applies (with εδ instead of ε), implying that
after O (1/(εδ)2) iterations, the distance of q from the current convex-hull would be smaller than
(1 + δ)ε .

So let ni be the number of unhappy points in the beginning of the ith iteration, and observe
that at least ni/kopt points are being hit in the ith iteration. In particular, let κ = 2ckopt/(ε

2δ 2)�,
and observe that in the iterations between i − κ and i , we have that the number of points being
hit is at least

∑i
j=i−κ nj/kopt ≥ 2nic/(ε

2δ 2). This implies that ni−κ ≥ 2ni . Otherwise, ni−κ < 2ni ,

implying that in this range of iterations >N = ni−κc/(ε
2δ 2) hits happened, which is impossible, as

ni−κ points can be hit at most N times before they are all happy.
As such, after κ iterations of the greedy algorithm, the number of unhappy points drops by a

factor of two, and we conclude that afterO (kopt (εδ)−2 logn) total iterations, the algorithm is done.
As for the running time, observe that the algorithm needs to maintain for each point of P its

nearest neighbor in the current convex-hull. As such, each iteration requires n computations of
nearest-neighbor, which can be done in Tnn (K) time, see Remark 2.9. �

4 APPROXIMATING THE CONVEX HULL IN HIGH DIMENSIONS

Here we provide an efficient bi-criteria approximation algorithm for Problem 2.5. That is, the al-
gorithm computes a subset U ⊆ �P , such that (i) dH (�U ,�P) ≤ O (ε1/3) diam(P) and (ii) |U | ≤
O (kopt (P , ε)/ε2/3). Significantly, the computed set U is actually a subset of P , implying that the
algorithm simultaneously solves both the continuous and discrete variants of the problem.

To simplify the presentation, in the remainder of this section we assume Δ = diam(P) = O (1)
and hence drop most appearances of Δ.

4.1 The Algorithm

Let δ = 8ε1/3. The algorithm is greedy, similar in spirit to the Gonzalez algorithm for k-center
clustering [11] and subspace approximation algorithms [14, Lemma 5.2]. The algorithm starts with
an arbitrary point t0 ∈ P . For i > 0, in the ith iteration, the algorithm computes the point ti in
P that is furthest away from �Ui−1, where Ui−1 = {t0, . . . , ti−1}. For now, assume these distance
queries are done exactly—later we describe how to use approximate queries (i.e., Lemma 2.7). Let
ri = d (ti ,�Ui−1). The algorithm stops as soon as ri ≤ δ and outputs Ui−1.

Observation 4.1. In the above algorithm, for all i > 0, the point ti is a vertex of �P (so long as

exact distance queries are used). In particular, if the output has to be a subset of the convex hull vertices,

then one can choose t0 to be the extreme vertex in any direction.

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 32. Publication date: June 2019.

Sparse Approximation via Generating Point Sets 32:11

Fig. 6. Setup for Claim 4.2, bounding
���oi − o′i

���.

Fig. 7. The various defined quantities in Lemma 4.3.

4.2 Analysis

By the termination condition of the algorithm, when the algorithm stops every point in P is in
distance at most δ = 8ε1/3 away from �Ui−1, as desired. As for the number of rounds until ter-
mination, we argue that in each round there exists some point o ∈ Popt that is far from �Ui−1 (as

specified in Claim 4.2) and such that d (o,Ui) ≤ (1 − Ω(ε2/3))d (o,Ui−1) .
So consider some round i , the current set Ui−1, and the point ti ∈ P furthest away from �Ui−1.

Let t ′i be the closest point to ti in �Ui−1, and let ri = ‖ti − t ′i ‖. Let hi be the hyperplane orthogonal
to the segment tit

′
i and lying ε distance below ti in the direction of t ′i . Let h+i denote the closed

halfspace having hi as its boundary and that contains ti , see Figure 6. If no points of Popt are in

h+i , then d (ti ,�Popt) > ε , which is impossible. Therefore, there must be a point oi ∈ Popt ∩ h+i . Let
o′i be the closest point to oi in �Ui−1.

Claim 4.2. ri − ε ≤ ‖oi − o′i ‖ ≤ ri .

Proof. Let h′i be the translation of hi so it passes through t ′i , see Figure 6. We have that ri − ε =
d (h′i ,hi) ≤ ‖oi − o′i ‖, as oi lies in h+i (i.e., above hi) and all of �Ui−1 lies below h′i .

For the second part, for any p ∈ Rd , let fi−1 (p) be the distance of p from �Ui−1. By Lemma 2.3
(iii), and since oi ∈ Popt ⊆ �P , it follows that ‖oi − o′i ‖ ≤ maxp∈�P fi−1 (p) = ‖ti − t ′i ‖ = ri . �

Lemma 4.3. If ri ≥ 8ε1/3, then d (oi ,�Ui) ≤ (1 − ε2/3)d (oi ,�Ui−1).

Proof. In the following, all entities are defined in the context of the ith iteration, and we omit
the subscript i denoting this to simplify the exposition. Assume, for the time being, that the an-
gle ∠tt ′o′ is a right angle and the segment t ′o′ has length � = 1, see Figure 7. This is the worst-
case configuration in terms of the new convex-hull �Ui getting closer to o, as can be easily seen.

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 32. Publication date: June 2019.

32:12 A. Blum et al.

Fig. 8. Note that o is not necessarily in the two-dimensional plane depicted by the figure. All other points

are in this plane.

(Specifically, any other configuration would cause the angle α = ∠zo′t in Figure 7 to decrease,
which below we argue needs to be upper bounded.)

Let z be the intersection of h with the ray emanating from o′ in the direction t − t ′. Let z ′ be the
closest point to z on o′t , let τ = ‖z − z ′‖, and let ρ be the radius of the ball formed by ball(o′, r) ∩ h.
See Figure 7.

Rather than bounding the distance of o to �Ui directly, we instead use bounds on ρ and
τ . Observe that o ∈ h+ ∩ ball(o′, r) ⊆ ball(z, ρ), and, as such, ‖o − z‖ ≤ ρ. Now we have ρ =√
r 2 − ‖z − o′‖2 =

√
r 2 − (r − ε)2 =

√
2rε − ε2 ≤

√
2rε .

Let α = ∠zo′t and β = π/2 − α = ∠to′t ′, and observe that sinα = cos β = �/
√
�2 + r 2, where � =

‖o′ − t ′‖ = 1. Now we have

τ

r − ε = sinα =
�

√
�2 + r 2

=
1

√
1 + r 2

≤
√

1 − r 2

2
≤ 1 − r 2

4
, (4.1)

since � = 1 and r ≤ 1.

Sanity Condition. Consider the line that is the intersection of the hyperplane h and the two-
dimensional plane spanned by t , t ′, and o′ (this line is denoted by h in the figures). Let u be the
point in distance ρ on this line from z, on the side further away from t . Let t ′′ be the intersection
of h with to′. Next, let u ′ be the nearest point to u on the segment to′, see Figure 8.

We want to argue that the distance between o and �Ui can be bounded in terms of the distance
between u and u ′; however, to do so we need to guarantee that u ′ is in the interior of this segment
to′. Setting �′ = ‖z − t ′′‖, this happens if

��u ′ − t ′′�� < ��t ′′ − o′�� ⇐⇒ ��u ′ − t ′′�� = (ρ + �′) cos β = (ρ + �′)
�′

‖t ′′ − o′‖ <
��t ′′ − o′��

⇐⇒ (ρ + �′) �′ < ��t ′′ − o′��2
= (�′)2

+ (r − ε)2 .

Thus, we have to prove that ρ�′ < (r − ε)2.As �′ < � = 1, we have that this is implied if ρ ≤
√

2rε <
(r − ε)2, and this inequality holds if r ≥ 8ε1/3.

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 32. Publication date: June 2019.

Sparse Approximation via Generating Point Sets 32:13

Back to the proof: We next bound the distance of o from �Ui . Observe that by rotating o around
the lineo′t , we can assume thato lies on the plane spanned by t , t ′,o′ and its distance to the segment
to′ has not changed. Now the set of points in distance r ′ from the segment o′t is a hippodrome, and
this hippodrome covers a connected portion of ball(o′, r). For r ′ = ‖u − u ′‖, by the above sanity
condition, this hippodrome covers all the points of ball(o′, r) that are above h. This implies that o
maximizes its distance to �Ui if o = u.

So let τ ′ = ‖u − u ′‖. By the above sanity condition, the segment to′ anduu ′meet at a right angle,
and, hence, by similar triangles (see Figure 8), we have

τ ′ =
�′ + ρ

�′
τ = τ + ρ

τ

�′
= τ + ρ sin β = τ + ρ

r
√
�2 + r 2

= τ + ρ
r

√
1 + r 2

≤ τ + ρr .

This implies, by Equation (4.1), that

d (o,�Ui)

d (o,�Ui−1)
≤ ‖u − u

′‖
‖z − o′‖ =

τ ′

r − ε ≤
τ

r − ε +
ρr

r − ε ≤
τ

r − ε + 2ρ ≤ 1 − r 2

4
+ 2
√
rε ≤ 1 − ε2/3

if r ≥ 8ε1/3. �

Lemma 4.4. Let P be a set of n points in Rd with diameter Δ = diam(P), and let ε > 0 be a param-

eter; then one can compute a set U ⊆ P , such that

(i) dH (�U ,�P) ≤ (8ε1/3 + ε)Δ,

(ii) m = |U | ≤ O (kopt/ε
2/3), where kopt = kopt (P , ε), and

(iii) the running time is O (nm2d/ε2).

Proof. Recall that in any round before the algorithm terminates ri > δΔ = 8ε1/3Δ. Let Popt =

opt(P , ε) be any optimal approximating set of size kopt. In the ith iteration of the algorithm, for

some point oi ∈ Popt, its distance to the convex hull of �Ui shrinks by a factor of 1 − ε2/3, by
Lemma 4.3. Conceptually, we charge round i to oi . Now note that by Claim 4.2, d (oi ,�Ui−1) ≥
ri − εΔ > (δ − ε)Δ ≥ Δδ/2. Therefore, once the distance of an optimal point o to �Ui falls below
Δδ/2 = 8ε1/3Δ/2, it cannot be charged again in any future iteration. The initial distance of o to �U0

is at most Δ. As such, by Lemma 4.3, an optimal point o can get charged at most k times, where k is
the smallest positive integer such that (1 − ε2/3)k Δ ≤ 4ε1/3Δ, which holds if exp(−kε2/3) ≤ 4ε1/3.
Namely, k = O (ε−2/3 log 1/ε).

Using the same idea of decreasing values of ε , as done in Lemma 2.7, one can improve this bound
to O (1/ε2/3). We omit the easy but tedious details. We conclude that the number of iterations
performed by the algorithm is at mostm = O (kopt/ε

2/3).
So the distance of all the points of Popt from �Um is at most δΔ. Now, consider any point p ∈ �P .

Let t = nn(p,�Popt), and observe that ‖p − t ‖ ≤ εΔ. Since t ∈ �Popt, we have that t can be written
as a convex combination t =

∑ν
i=1 αioi , where α1, . . . ,αν ≥ 0,

∑
i αi = 1, and o1, . . . ,oν ∈ Popt. For

i = 1, . . . ,ν , let o′i = nn(oi ,�Um), and note that t ′ =
∑

i αio
′
i ∈ �Um . Now observe that for all i ,

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 32. Publication date: June 2019.

32:14 A. Blum et al.

‖oi − o′i ‖ ≤ δΔ. In particular, (oi − o′i) ∈ ball(0,δΔ), and hence
∑

i αi (oi − o′i) ∈ ball(0,δΔ). There-

fore, d (p,�Um) ≤ ‖p − t ′‖ ≤ ‖p − t ‖ + ‖t − t ′‖ ≤ εΔ + ‖∑i αi (oi − o′i)‖ ≤ (ε + δ)Δ. We conclude

that dH (�Um ,�P) ≤ (ε + δ)Δ.

As for the running time, at each iteration, the algorithm computes the point in P furthest away
from �Ui . The analysis above assumes these queries are done exactly, which is expensive. However,
by Lemma 2.7, one can use faster εΔ-approximate queries. Specifically, in each iteration, for each
point p ∈ P , use Lemma 2.7 to compute an additive εΔ-approximation to its distance to �Ui , and
then select the point in P with the largest returned approximate distance. It is easy to verify that this
does not change the correctness of the algorithm. Specifically, the point ti chosen in the ith round
may now be εΔ closer to the current convex hull than the furthest point, and so in the analysis
of Lemma 4.3, oi may lie as much as εΔ above ti . In particular, the length of τ does not change;
however, now ρ is only bounded by 2

√
rε instead of

√
2riε , and this constant factor difference only

slightly degrades the constant in front of ε2/3 in the lemma statement. The other effect is that
when the algorithm stops the distance to the convex hull is bounded by (8ε1/3 + ε)Δ, and this is
accounted for in the above theorem statement.

Now using Lemma 2.7 directly, it takes O (nmd/ε2) time per round to find the εΔ approximate
furthest point, and therefore the total running time is O (nm2d/ε2). �

4.2.1 Improving the Running Time Further. The running time of the algorithm of Lemma 4.4 can
be improved further, but it requires some care. Let Li−1 = span(Ui−1) denote the linear subspace
spanned by the point set Ui−1, with the orthonormal basis v1, . . .vi−1. For any point p ∈ P , let
p ′i−1 denote its orthogonal projection onto the subspace; that is, p ′i−1 = nn(p,Li−1) =

∑i
j=1〈p,vj 〉vj ,

and let �i−1 (p) = ‖p − pi−1‖ = d (p,Li). Observe that for any point t ∈ Li−1 and any point p ∈ Rd ,

we have that ‖p − t ‖ =
√
‖p − p ′i−1‖2 + ‖p ′i−1 − t ‖2 by the Pythagorean theorem, where p ′i−1 is the

projection of p to Li−1.
As such, for any point p ∈ P , in the beginning of the ith iteration, the algorithm has the

projection and distance of p to Li−1; that is, p ′i−1 = (〈p,v1〉, . . . , 〈p,vi−1〉) and �i−1 (p). The algo-

rithm also initially computes for each point p ∈ P its norm ‖p‖2. Therefore, given any point
t ∈ Li−1, its distance to a point p ∈ P can be computed in O (i) time (instead of O (d)). The al-
gorithm also maintains, for every point p ∈ P , an approximate nearest neighbor nni−1 (p) ∈ �Ui−1;
that is,

d (p,�Ui−1) ≤ ��p − nni−1 (p)�� ≤ d (p,�Ui−1) + εΔ,

where Δ = diam(P). Naturally, the algorithm also maintains the distancedi−1 (p) = ‖p − nni−1 (p)‖.
Now the algorithm does the following in the ith iteration:

(A) Computes, in O (n) time, the point p ∈ P that maximizes di−1 (p).
(B) Let p ′i−1 be the projection of p to Li−1. Computes, in O (d) time, the new vector for the

basis of Li ; that is, vi = (p − p ′i−1)/‖p − p ′i−1‖. Now v1, . . . ,vi is an orthonormal basis of
the linear space Li .

(C) For every point p ∈ P , update its projection p ′i−1 into Li−1 into the projection of p into Li

by computing 〈p,vi 〉. Also, update �i (p) =
√
�i−1 (p)2 − 〈p,vi 〉2.

(D) Let P ′ denote the projected points of P intoLi . For everyp ∈ P , we need to update nni−1 (p)
to nni (p) (and the associated distance). To this end, the algorithm of Lemma 2.7 is called
onp ′i andUi (all lying in the subspace Li that is of dimension i). Importantly, the algorithm
of Lemma 2.7 is being warm-started with the point nni−1 (p). Let #i (p) be the number of
iterations performed inside the algorithm of Lemma 2.7 to update the nearest-neighbor

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 32. Publication date: June 2019.

Sparse Approximation via Generating Point Sets 32:15

to p. Observe that the running time for p is O (#i (p)i2), since i = |Ui |, the points lie in an
i-dimensional space, and, as such, every iteration of the algorithm of Lemma 2.7 takes
O (i2) time.

Lemma 4.5. For m = O (kopt/ε
2/3), the running time of the above algorithm is O (nm(d +m/ε2 +

m2)).

Proof. The algorithm performs m = O (kopt/ε
2/3) iterations, and this bounds the dimension of

the output subspace. Every iteration of the algorithm takesO (nd) time, except for the last portion
of updating the approximate nearest point for all the points of P (i.e., (D)). The key observation
is that

∑
i (#i (p) − 1) = O (1/ε2), since if the algorithm of Lemma 2.7 runs α = #i (p) > 1 iterations,

then the distance of p to the convex-hull shrinks by a factor of (1 − ε2/2)α . Arguing as in the proof
of Lemma 2.7, this can happen O (1/ε2) times before p is in distance at most εΔ from the convex-
hull and can no longer be updated. As such, for a single point p ∈ P , the operations in (D) takes
overall

∑m
i=1 O (i2 (#i (p) − 1)) = O (m2 (m + 1/ε2)) time. This implies that the overall running time

of the algorithm is O (n(dm +m2/ε2 +m3)). �

4.2.2 The Result.

Theorem 4.6. Let P be a set of n points in Rd with diameter Δ = diam (P), and let ε > 0 be a

parameter; then one can compute a set U ⊆ P , such that

(i) dH (�U ,�P) ≤ (8ε1/3 + ε)Δ, and

(ii) |U | ≤ O (kopt/ε
2/3), where kopt = kopt (P , ε).

The running time of the algorithm is O (nm(d +m/ε2 +m2)) for m = O (kopt/ε
2/3). (Here the con-

stants hidden in the O are independent of the dimension.)

Remark 4.7.

(A) The constants hidden in the O notation used of Theorem 4.6 are independent of the di-
mension. In comparison to the other algorithms in this article, the approximation quality
is slightly worse. However, the advantage is a drastic improvement in the size of the
approximation.

(B) The running time of the algorithm of Theorem 4.6 can be further improved, by keep-
ing track for each point p ∈ P , and each point t ∈ Ui , the distance of t from the hyper-
plane (in Li) that determines whether the approximate nearest neighbor to p needs to
be recomputed. By careful implementation, this can be done in the ith iteration in O (in)
time (updating O (in) such numbers in this iteration). This improves the running time to
O (nm(d +m/ε2)). Motivated by our laziness, we omit the messy details.

Remark 4.8. Note that the algorithm is a simple iterative process, which is oblivious to the value
of the diameter Δ = diam (P) and does not use it directly anywhere. Nevertheless, afterO (kopt/ε

2/3)

iterations, the solution is an (8ε1/3 + ε)Δ-approximation to the convex hull. In practice, one may
not know the value of kopt, and so this value cannot be used in a stopping condition. However, it
is easy to get a 2-approximation Δ′, such that Δ ≤ Δ′ ≤ 2Δ by a linear scan of the points. Then,
one can use the check d (ti ,�Ui) = dH (�P ,�Ui) ≤ (8ε1/3 + ε)Δ′/2 as a stopping condition, where
Ui is the current approximation.

ACKNOWLEDGMENTS

We thank the anonymous referees for their useful feedback.

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 32. Publication date: June 2019.

32:16 A. Blum et al.

REFERENCES

[1] P. K. Agarwal, S. Har-Peled, and K. Varadarajan. 2005. Geometric approximation via coresets. In Combinatorial and

Computational Geometry, J. E. Goodman, J. Pach, and E. Welzl (Eds.). Cambridge, New York, NY.

[2] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. 2004. Approximating extent measures of points. J. Assoc. Comput.

Mach. 51, 4 (2004), 606–635. DOI:https://doi.org/10.1145/1008731.1008736

[3] S. Arora, R. Ge, and A. Moitra. 2014. New algorithms for learning incoherent and overcomplete dictionaries. In Pro-

ceedings of the 27th Annual Conference on Learning Theory (COLT’14). Vol. 35. 779–806.

[4] M.-F. Balcan, A. Blum, and S. Vempala. 2015. Efficient representations for lifelong learning and autoencoding. In

Proceedings of the 28th Annual Conference on Learning Theory (COLT’15). Vol. 40. 191–210.

[5] S. Barman. 2015. Approximating Nash equilibria and dense bipartite subgraphs via an approximate version of

Caratheodory’s theorem. In Proceedings of the 47th Annual ACM Symposium on the Theory of Computing (STOC’15).

ACM, 361–369. DOI:https://doi.org/10.1145/2746539.2746566

[6] A. Blum, S. Har-Peled, and B. Raichel. 2015. Sparse approximation via generating point sets. ArXiv e-prints (July 2015).

arxiv:cs.CG/1507.02574

[7] A. Blum, S. Har-Peled, and B. Raichel. 2016. Sparse approximation via generating point sets. In Proceedings of the

27th ACM-SIAM Symposium on Discrete Algorithms (SODA’16), Robert Krauthgamer (Ed.). SIAM, 548–557. DOI:
https://doi.org/10.1137/1.9781611974331.ch40

[8] G. Van Buskirk, B. Raichel, and N. Ruozzi. 2017. Sparse approximate conic hulls. In Proceedings of the Annual Con-

ference on Neural Information Processing Systems: Advances in Neural Information Processing Systems 30 (NIPS’17).

2531–2541.

[9] K. L. Clarkson. 1993. Algorithms for polytope covering and approximation. In Proceedings of the 3rd Workshop on

Algorithms and Data Structure (WADS’93). Lecture Notes in Computer Science, Vol. 709. Springer-Verlag, 246–252.

[10] K. L. Clarkson. 2010. Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm. ACM Trans. Algor. 6, 4

(2010), 63:1–63:30. DOI:https://doi.org/10.1145/1824777.1824783

[11] T. Gonzalez. 1985. Clustering to minimize the maximum intercluster distance. Theoret. Comput. Sci. 38 (1985), 293–306.

[12] S. Har-Peled. 2011. Geometric Approximation Algorithms. Mathematical Surveys and Monographs, Vol. 173. American

Mathematical Society, Boston, MA.

[13] S. Har-Peled, N. Kumar, D. Mount, and B. Raichel. 2015. Space exploration via proximity search. In Proceedings of

the 31st Annual Symposium on Computer Geometry (SoCG’15). Vol. 34. 374–389. DOI:https://doi.org/10.4230/LIPIcs.

SOCG.2015.374

[14] S. Har-Peled and K. R. Varadarajan. 2004. High-dimensional shape fitting in linear time. Discrete Comput. Geom. 32,

2 (2004), 269–288.

[15] D. Haussler and E. Welzl. 1987. ε -nets and simplex range queries. Discrete Comput. Geom. 2 (1987), 127–151.

[16] P. M. Long. 2001. Using the pseudo-dimension to analyze approximation algorithms for integer programming. In

Proceedings of the 7th Workshop on Algorithms and Data Structure (WADS’93). Lecture Notes in Computer Science,

Vol. 2125. 26–37.

[17] V. Mirrokni, R. P. Leme, A. Vladu, and S. C. Wong. 2017. Tight bounds for approximate Carathéodory and beyond.

In Proceedings of the 34th International Conference on Machine Learning (Proceedings of Machine Learning Research),

Doina Precup and Yee Whye Teh (Eds.), Vol. 70. 2440–2448.

[18] A. B. J. Novikoff. 1962. On convergence proofs on perceptrons. In Proceedings of the Symposium on Mathematics and

Theoretical Automata. Vol. 12. 615–622.

[19] D. A. Spielman, H. Wang, and J. Wright. 2012. Exact recovery of sparsely-used dictionaries. In Proceedings of the 25th

Annual Conference on Learning Theory (COLT’12). 37.1–37.18.

Received June 2017; revised August 2018; accepted December 2018

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 32. Publication date: June 2019.

https://doi.org/10.1145/1008731.1008736
https://doi.org/10.1145/2746539.2746566
https://doi.org/10.1137/1.9781611974331.ch40
https://doi.org/10.1145/1824777.1824783
https://doi.org/10.4230/LIPIcs.SOCG.2015.374
https://doi.org/10.4230/LIPIcs.SOCG.2015.374

